Arbitrarily High-Order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen–Cahn Equations

نویسندگان

چکیده

We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen–Cahn equations. apply kth-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), lumped mass finite element method space with piecewise rth-order polynomials Gauss–Lobatto quadrature. At each level, cut-off post-processing proposed to eliminate extra values violating principle at nodal points. As result, numerical solution satisfies (at all points), optimal error $$O(\tau ^k+h^{r+1})$$ theoretically proved certain schemes. These stepping include algebraically stable collocation-type methods, which could be arbitrarily high-order both time. Moreover, combining strategy scalar auxiliary value (SAV) technique, we energy-stable schemes, Numerical results are provided illustrate accuracy method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound-preserving high order schemes

For the initial value problem of scalar conservation laws, a bound-preserving property is desired for numerical schemes in many applications. Traditional methods to enforce a discrete maximum principle by defining the extrema as those of grid point values in finite difference schemes or cell averages in finite volume schemes usually result in an accuracy degeneracy to second order around smooth...

متن کامل

Maximum principle preserving high order schemes for convection-dominated diffusion equations

The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...

متن کامل

High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations

In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...

متن کامل

Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms

In [16, 17], we constructed uniformly high order accurate discontinuous Galerkin (DG) schemes which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics with the ideal gas equation of state. The technique also applies to high order accurate finite volume schemes. For the Euler equations with various source terms (e.g., gravity and chemical reactions),...

متن کامل

Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.

A class of discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrödinger equation and the Ablowitz-Ladik equation. As a common property, these equations possess three kinds of exact analytical sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Computing

سال: 2022

ISSN: ['1573-7691', '0885-7474']

DOI: https://doi.org/10.1007/s10915-021-01746-y